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Using data from rural monitoring sites across the contiguous
United States, we evaluated fine particulate matter (PM2.5) trends
for 1988–2016. We calculate trends in the policy-relevant 98th quan-
tile of PM2.5 using Quantile Regression. We use Kriging and Gaussian
Geostatistical Simulations to interpolate trends between observed
data points. Overall, we found positive trends in 98th quantile
PM2.5 at sites within the Northwest United States (average 0.21 ±
0.12 μg·m−3·y−1;±95% confidence interval). This was in contrast with
sites throughout the rest of country, which showed a negative trend
in 98th quantile PM2.5, likely due to reductions in anthropogenic emis-
sions (average −0.66 ± 0.10 μg·m−3·y−1). The positive trend in 98th
quantile PM2.5 is due to wildfire activity and was supported by
positive trends in total carbon and no trend in sulfate across the
Northwest. We also evaluated daily moderate resolution imaging
spectroradiometer (MODIS) aerosol optical depth (AOD) for 2002–
2017 throughout the United States to compare with ground-based
trends. For both Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) PM2.5 and MODIS AOD datasets, we found
positive 98th quantile trends in the Northwest (1.77 ± 0.68% and
2.12 ± 0.81% per year, respectively) through 2016. The trend in
Northwest AOD is even greater if data for the high-fire year of
2017 are included. These results indicate a decrease in PM2.5 over
most of the country but a positive trend in the 98th quantile PM2.5

across the Northwest due to wildfires.
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Fine particulate matter (diameter <2.5 μm; PM2.5) is shown to
have significant adverse effects on human health, with direct

links to pulmonary and cardiovascular emergencies (1–3). To
combat these issues, the Clean Air Act requires the US Environ-
mental Protection Agency (EPA) to set National Ambient Air Quality
Standards (NAAQS). The current NAAQS for PM2.5 is set for both
maximum 24-h (98th percentile, averaged over 3 y >35 μg/m3) and
yearly (annual mean, averaged over 3 y >12.0 μg/m3) averages. On
average, PM2.5 has been decreasing nationally (42% decrease for
2000–2016) (4). Although many urban areas still exceed the NAAQS,
the overall decrease in PM2.5 is a direct result of a reduction in
anthropogenic emissions.
Wildfires are a significant source of PM2.5. Since the mid-1980s,

there has been an increase in the frequency and duration of large
fires (defined as >400 ha) along with longer wildfire seasons in the
Northwest United States (5). This increase in wildfire season and
extent has been linked with changes in forest management practices
and climatological factors such as increased spring/summer tem-
peratures, earlier snowmelt, and moisture deficits (5–11). In the
Northern Rockies and Pacific Northwest regions, large fires for
1984–2011 have been increasing at a rate of 0.6–1.0 per year (7).
Additionally, Westerling et al. (5) and Westerling (12) estimate that
wildfires in the Northern Rockies alone have contributed 50–60%
of the increase in large fires across the western United States for
1970–2016. Recently, Abatzoglou and Williams (13) concluded that
anthropogenic climate change has doubled the cumulative wildfire
area burned during 1984–2015 in the western United States (14).
This suggests that a significant portion of wildfire emissions are
due to anthropogenic factors including climate change and direct

ignition (15). Several studies have also modeled wildfire probability
and extent as well as associated PM and organic carbon (OC)
through the end of the century (16–19). These studies found an
increased probability of wildfires (16, 19) with a coupled increase in
summertime PM2.5 that could offset the reduction in anthropogenic
PM2.5 emissions in the western United States (17).
Due to the episodic nature of wildfires, quantifying trends in

PM from wildfires is difficult. PM2.5 concentrations during high
wildfire years are approximately two times the average summer
concentrations (20). In urban areas, it can be difficult to separate
the contribution to PM2.5 from natural and anthropogenic sources.
To resolve this issue, we use data from the Interagency Monitoring
of Protected Visual Environments (IMPROVE) network. Sites
within this network are largely in national forests and parks, with
less direct influence from urban sources. A previous study using this
dataset concluded that although wildfires appeared to be a major
contributor to particulate organic matter in rural areas, most long-
term trends (1989–2008) in the 90th percentile of PM were either
low or negative across the western United States (21). However,
Rose (22) analyzed smoke concentrations at six western US
IMPROVE sites in the last few decades and found that the
(>90th) high percentile concentrations in the last decade are
significantly larger than in the late 1990s.
Given the evidence of increasing wildfires and health effects of

PM, the goals of this analysis are as follows: (i) compare the 98th
quantile PM2.5 trends in the Northwest United States with the
rest of the country; (ii) identify how concentrations of PM2.5 are
changing in the Northwest United States; and (iii) determine
how markers for wildfire and anthropogenic pollution vary with
observed PM2.5 trends. To accomplish these goals, we aggregate
IMPROVE data for 1988–2016 across the contiguous United States
and Ontario, Canada. We use IMPROVE particulate total carbon
(TC) and sulfate (SO4) as markers for wildfire and anthropogenic
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pollution, respectively. We also use satellite measured aerosol op-
tical depth (AOD) data for 2002–2017.

Results and Discussion
Fig. 1 shows the trends in PM2.5 for 1988–2016 at IMPROVE sites
across the contiguous United States and Ontario. Observational
trend data are shown by dots with corresponding values in μg·m−3·y−1.
These trends are calculated at the 98th quantile using Quantile
Regression (QR). Not all trend values are shown for readability, but
the complete list can be found in SI Appendix, Table S1. The trends
at individual sites are highly variable in wildfire-prone areas due to
the location of wildfires, varying plume transport patterns, and the
length of data records. Kriging provides a spatial smoothing of
trends, but there are multiple approaches. The interpolated color
ramp values (μg·m−3·y−1) are drawn by Kriging observational data.
The percentage Krige (solid black lines with triangles indicating di-
rection) shows the boundary where Krige-interpolated PM2.5 trends
within have either a 90% probability of being positive or a 90%
probability of being negative over that region. At IMPROVE sites
within the 90% positive trend region, the increase in the observed
98th quantile PM2.5 per year is up to 0.97 ± 0.22 μg·m−3·y−1 at
Sawtooth National Forest, with an average of 0.21 ± 0.12 μg·m−3·y−1

(n = 23). We also use Gaussian Geostatistical Simulations (GGS) to
examine the spatial pattern when trend errors are incorporated into
the final Krige product. This result is shown in SI Appendix, Fig. S1A.
Comparing Fig. 1 to the corresponding GGS plot in SI Appendix,
Fig. S1A, we find that although the Krige-predicted maximum trend
in the Northwest decreases slightly, the positive trend region is very
similar when trend uncertainty is included. In addition, the SE Krige
prediction map (SI Appendix, Fig. S1B) indicates a low uncertainty in
Krige trends in the Northwest and, therefore, a robust interpolated

trend. The increase in high-quantile Northwest PM2.5 is consistent
with previous work showing an increase in organic aerosol correlated
with fire area in the Rocky Mountain region (23). Our analysis im-
plies that most areas within the Northwest, with the exception of the
Seattle–Portland urban corridor, show a positive trend in the 98th
quantile PM2.5 due to wildfire influence. It is assumed that the
Seattle–Portland corridor is more directly affected by decreasing
anthropogenic emissions.
In contrast, the rest of the United States shows a predominately

negative trend in 98th quantile PM2.5. This is supported by the 90%
negative trend region, which shows that much of the rest of the
United States is within the region of decreasing PM2.5 (average 98th
quantile trend of −0.66 ± 0.10 μg·m−3·y−1; n = 89). This result is
consistent with reductions in PM2.5 precursor gases (e.g., SO2)
across the United States (24, 25).
Looking closely at two sites, one in the Northwest and one in the

eastern United States, we can identify the effects of decreasing
anthropogenic pollution and increasing wildfires. In Fig. 2, we have
plotted log-transformed PM2.5 data from the Sawtooth National
Forest, Idaho. Observed PM data are shown by black circles. Gray
vertical bars indicate the summer wildfire season. It is clear that
most high PM2.5 events are occurring in the summer. Using QR
analysis, we identify changes in different quantiles of these data.
These trends, calculated by QR, are shown by solid blue lines at the
10th, 25th, 50th, 75th, 90th, 95th, and 98th quantiles. At this site, the
lower quantiles of the PM2.5 distribution are uniformly decreasing,
consistent with a reduction in anthropogenic emissions. At higher
quantiles (>90th), we see a positive trend in extreme PM2.5 events.
Specifically, at the 98th quantile, we see a positive PM2.5 trend of
6.7 ± 1.1% per year. Variations in the high- and low-quantile slopes
suggest one mechanism causing a decrease at low-PM2.5 quantiles

Fig. 1. The 98th Quantile Regression of PM2.5 trends. Observed PM trends for 1988–2016 (calculated using QR methods) from IMPROVE sites are shown by
black dots with corresponding values in μg·m−3·y−1. Krige-interpolated values (calculated from observed data) are shown by the color ramp. Solid black lines
with arrows (indicating direction) show the boundary where the Krige-interpolated PM2.5 trends within have a 90% probability of being positive or negative.
Of the 157 sites, 92 show statistical significance (8 positive/84 negative).
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and a different mechanism causing the increase in high quantiles,
which we suggest to be anthropogenic reduction and wildfire in-
fluence, respectively. In contrast, Fig. 3 shows a characteristic
eastern US site, Mammoth Cave National Park, Kentucky. In this
example, all quantiles are decreasing uniformly, with a 98th quantile
trend of −3.6 ± 0.4% per year, suggesting a single mechanism is
responsible. These decreases are indicative of a site that is pre-
dominately affected by anthropogenic pollution, which has benefit-
ted from a reduction in anthropogenic emissions. Using QR
analyses, these sites show two different regimes for PM2.5 trends.
In the Northwest, we conclude an increase in extreme PM events
(seen primarily during summer) is due to wildfire emissions; in the
eastern United States, we see a decrease in PM at all quantiles
due to a reduction in anthropogenic emissions.
Fig. 4 shows average QR values at sites in the Northwest

(black) and the rest of the United States (blue). These regions
are defined as the area within the 90% positive and negative
boundaries from Fig. 1, respectively. Trend SE from each site is
pooled by region and incorporated into the 95% confidence in-
terval shading shown in Fig. 4. Trends at 94th quantile and below
are decreasing for the Northwest and the rest of the United
States. However, at the high quantiles (e.g., 98th quantile), PM is
increasing in the Northwest (1.77 ± 0.68% per year) compared
with the rest of the country (−3.48 ± 0.18% per year). This
analysis confirms our previous case studies, indicating an in-
crease in high-quantile PM2.5 trends in the Northwest and a
decrease in all PM quantiles in the rest of the country.
In Fig. 5, we plot trends in TC and SO4, respectively. Observed

trends, Krige trend interpolation, and the Krige probability re-
gions are plotted in the same manner as Fig. 1. The GGS and SE
plots for both TC and SO4 are shown in SI Appendix, Figs. S2 and
S3. TC and SO4 GGS plots show similar results compared with
Fig. 5, suggesting robust spatially interpolated trends. We use TC
as a marker for wildfire emissions because wildfire PM is com-
prised of up to 80% OC (26, 27). SO4 aerosol from SO2 emis-
sions is a standard indicator of anthropogenic pollution (25).

However, since SO4 has been decreasing significantly (24, 25,
28), it is no longer the dominate component of PM2.5 in the
eastern United States (24). In Fig. 5A, the TC trend within the

Fig. 3. Mammoth Cave National Park PM2.5 data. Log-transformed PM2.5

data for 1991–2016 are shown by black circles. The gray shading indicates
the summer season. Solid blue lines denote quantile regression of PM data
at the 10th, 25th, 50th, 75th, 90th, 95th, and 98th quantiles (lowest to
highest line).

Fig. 2. Sawtooth National Forest PM2.5 data. Log-transformed PM2.5 data for
1994–2016 are shown by black circles. The gray shading indicates the summer
season. Solid blue lines denote quantile regression of PM data at the 10th,
25th, 50th, 75th, 90th, 95th, and 98th quantiles (lowest to highest line).

Fig. 4. Quantile regression trends. The black and blue dotted lines indicate the
trend in PM2.5 across quantiles from 0.10 (10th) to 0.98 (98th) for the Northwest
United States (n = 23) and the rest of the country (n = 89), respectively. Shading
indicates the 95% CI from the average trend. From 0.10 to 0.90, intervals of 0.10
are chosen, and from quantile 0.90–0.98, intervals of 0.02 are chosen.
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90% positive trend region corresponds well with Fig. 1, confirming
wildfire influence in the same area as positive 98th quantile PM2.5
trends. These TC trends are consistent with previous work by
Spracklen et al. (29) and Hallar et al. (23). Across the rest of the

United States, we observe zero or negative trends in TC, sug-
gesting a smaller, decreasing influence from emission sources.
This decrease in TC across the rest of the United States is con-
sistent with previous work by Blanchard et al. (28). We considered

Fig. 5. TC and SO4 98th quantile trends. Observed 98th quantile TC (Top) and SO4 (Bottom) trends (calculated using QRmethods) from IMPROVE sites for 1988–
2016 are shown by black dots with corresponding values in μg·m−3·y−1. Krige-interpolated values (calculated from observed data) are shown by the color ramp. In
A, the solid black lines with arrows (indicating direction) show the boundary where 90% of the Krige-interpolated TC trends within are positive or negative. Of
the 149 sites, 73 show statistical significance. In B, all regions are within the 90% negative slope estimation. Of the 156 sites, 145 show statistical significance.
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whether these TC and PM2.5 trends could be due to increasing
biogenic emissions associated with warmer temperatures. This
hypothesis was rejected because increases in biogenic emissions
would result in a broad increase of TC and PM2.5 distributions.
Instead, our analysis shows an increase at the high quantiles of
these distributions.
In Fig. 5B, we see significantly decreasing SO4 in the eastern

United States due to a reduction in SO2 emissions from power
plants (25). We also notice that SO4 trends in the western United
States are less than zero. This suggests that SO4 in the Northwest
is not contributing to the observed positive trend in PM2.5.
To compare with ground-based observations, we use the

same Krige methodology on moderate resolution imaging
spectroradiometer (MODIS) Aqua AOD data for 2002–2017
over the United States. It is important to note that AOD data
will show aerosols in the full atmospheric column, not just at the
surface. SI Appendix, Fig. S4 shows the 98th quantile of AOD
across the United States. The GGS and SE plots for the MODIS
AOD data are shown in SI Appendix, Fig. S5. Areas of positive
trends in AOD approximately correspond with the area in Figs. 1
and 5A. The MODIS and IMPROVE Krige products should not
exactly match because MODIS AOD values show aerosols in the
full atmospheric column and are more impacted by transport,
whereas the IMPROVE PM values should mostly be impacted by
regional or local sources. The MODIS Krige product is similar in
extent to the smoke spatial distribution reported by Kaulfus et al.
(30). The extent of their smoke product extends further east than
our Krige product, likely due to our focus on the highest (98th
quantile) AOD values, while their spatial distribution is derived
from a (simpler) smoke or no smoke criteria. Using boundaries at
42° N and 108° W to separate the Northwest from the rest of the

United States, we find a 2002–2017 average 98th quantile AOD
trend of 5.01 ± 0.98% per year for the Northwest and −0.92 ±
0.55% per year for the rest of the county. Since 2017 was an es-
pecially high-fire year in the Northwest, these trends are signifi-
cantly higher than the IMPROVE trends for 1988–2016. Fig. 6
shows QR analysis of a representative MODIS grid box in the
Northwest with 2017 showing the highest AOD. This grid box
corresponds to Sawtooth National Forest (Fig. 2) and shows a
98th quantile PM2.5 trend of 4.5 ± 1.8% per year for 2002–2017
(2.6 ± 1.8% per year for 2002–2016). For the entire Northwest
region, we calculate 2002–2016 average 98th quantile AOD trends
of 2.12 ± 0.81% per year and −1.20 ± 0.51% per year for the rest
of the county, which is similar to the IMPROVE results shown in
Fig. 4.

Conclusions
Based on the analysis of PM2.5 at IMPROVE sites across the
contiguous United States and Ontario, we find a positive trend in
the 98th quantile of PM2.5 in the Northwest and a negative trend
in most other areas. We investigate anthropogenic influences
and find negative trends in SO4 across the entire United States.
We attribute the increase in PM2.5 in the Northwest to wildfires
based on the similarly positive trends in TC and MODIS AOD.
Due to the significant difference in 98th quantile PM2.5 trends
between the Northwest and the rest of the country, we are
confident in our analysis of separate mechanisms affecting each
region. Ultimately, we conclude that wildfires are causing the
increase in PM2.5 at the 98th quantile in the Northwest. While
areas within the Northwest are generally below the EPA PM2.5
standards, we show that wildfires are causing a significant effect
on high-quantile PM2.5 that could offset anthropogenic reduc-
tions as suggested by Val Martin et al. (17). This result has im-
portant implications for wildfire-prone regions in the Northwest
and supports model predictions of increasing wildfires and PM2.5
in a warming world.

Methods
Data. The IMPROVE network has monitored PM mass and chemical compo-
sition at over 200 sites since 1987. PM filter samples are collected at each site
for 24 h every 3 d. We selected the 160 sites within the contiguous United
States and Ontario, Canada, with greater than 10 y of data (views.cira.
colostate.edu/fed/DataWizard/Default.aspx). We use fine particulate matter
(MF), total fine organic carbon (OCf), total fine elemental carbon (ECf), and
fine SO4 (SO4f) from these datasets. We calculate TC as [(OCf × 1.8) + ECf] to
determine trends in TC and avoid carbon trend uncertainties noted by Hand
et al. (21). For TC analysis, we omitted 10 sites where OC was at least 5 μg/m3

and 20% greater than MF at the 98th percentile for 2 or more years. These
sites are removed from the TC plot in Fig. 5A to avoid bias from unrealistic
OC mass values in the overall trends. SI Appendix, Table S1 provides the list
of IMPROVE sites used, along with years of data, coordinates, calculated
trends, and error estimates of those trends.

MODIS Aqua 1° × 1° Daily Averaged data (MYD08_D3) for 2002–2017 were
retrieved from the NASA Earth Data Level-1 and Atmospheric Archive & Distri-
bution System Distributed Active Archive Center (LAADS DAAC) website (https://
ladsweb.modaps.eosdis.nasa.gov/). We used the “AOD 550 nmDark Target/Deep
Blue Combined Mean” dataset. To calculate the 95% confidence intervals for
MODIS data, we assume values are independent at 2.5° × 2.5° intervals.

Statistical Methods. To model the change in extreme events at IMPROVE sites
and in MODIS data, we use QR (R package “quantreg”) (31). While ordinary
least squares (OLS) regressions use symmetric weighting to regress data, this
may not describe the full dataset if there are significant outliers or the data
have heterogeneous variance. This is especially important in our analysis
given the high variability in PM2.5 due to high- and low-wildfire years. By
focusing only on changes in the distribution mean, we may over- or un-
derestimate the real changes in a heterogeneous distribution. QR was de-
veloped by Koenker and Basset (32) to estimate rates of change across the
full range of a distribution by applying asymmetric weighting at different
quantiles to regress data (33, 34). This approach does not subset data into
quantiles but instead regresses the full dataset at a specific quantile (35). We
use QR at all sites to focus on variability in data extremes for the 10th–98th

Fig. 6. Northwest MODIS AOD site. Log-transformed AOD data for 2002–
2017 are shown by black circles. The gray shading indicates the summer
season. Solid blue lines denote quantile regression of PM data at the 10th,
25th, 50th, 75th, 90th, 95th, and 98th quantiles (lowest to highest line). This
grid box (43.87°N, 114.91°W) is directly over Sawtooth National Forest, ID
(Fig. 2).
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quantiles. QR analyses use all data points (daily data, not subset by year) to
calculate quantile regressions. Each QR trend estimate includes a SE and P
value used to evaluate uncertainty and statistical significance, respectively.
Individual trend values listed in the text are reported with ±SE. Averaged
trend values are listed with a ±95% confidence interval.

Trend estimates are considered statistically significant if the QR analysis
returns P < .10. We choose a lower statistical significance threshold in ac-
cordance with previous analyses of IMPROVE data (21). We do not remove
trend estimates based on statistical significance in our Krige analyses but
instead propagate estimated trend errors (using GGS) and include the
number of statistically significant values for each figure in the respective
caption.

Geospatial Methods—Kriging. Trend values are interpolated between
IMPROVE sites andMODIS grid boxes by Kriging observed data using ArcMap
10.5.1 Geostatistical Analyst Toolbox. Spatial data in decimal degree coor-
dinates are projected using the “USA Contiguous Equidistant Conic” co-
ordinate system, which uses linear units (meters). Conversion to a linear
coordinate system is important when Kriging data as interpolations are
made based on the precise distance between observed data points. PM2.5,
TC, SO4, and AOD data are Kriged using a normal-score transformation to
account for nonnormally distributed effects in our dataset. These models are
optimized by adjusting maximum and minimum neighbors to reduce the
root-mean-square error (RMSE) toward 0 and the standardized RMSE to-
ward 1. SI Appendix, Table S2 shows validation results from 17 different
Kriging methodologies and identifies the methodology chosen based on
lowest overall error. Krige results can be found in Figs. 1 and 5 and SI Ap-
pendix, Fig. S4. To evaluate the influence from heterogeneous trend error

estimates (each QR trend estimate has an associated SE), we use the GGS tool
on the Krige-interpolated values. We run 500 simulations per figure and
show convergence for each aggregated Krige output. The GGS tool calcu-
lates a mean Krige raster that incorporates the heterogeneous trend un-
certainty into the final interpolated values. We also calculate prediction SE
of each Krige to evaluate uncertainty of the interpolated product. GGS and
SE plots for each Krige figure can be found in SI Appendix, Figs. S1–S3 and
S5. Percentage probability vectors for Krige and GGS products are shown by
solid black lines with triangles (indicating direction) in Figs. 1 and 5 and SI
Appendix, Figs. S1–S5. Krige probability vectors show the boundary where
interpolated PM2.5 trends have a 90% probability of being positive or neg-
ative based on the weighted combination of magnitude and binary as-
signment (i.e., trend values above or below 0) for observed values within the
region. GGS probability vectors are drawn based on the boundary where
90% of the Krige-interpolated values inside are calculated to be positive or
negative. Note that Kriging and GGS outputs are comprised of interpolated
results between all sites and do not strictly contour observed data points.
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